12 research outputs found

    Inactivation of p38 kinase delays the onset of senescence in rabbit articular chondrocytes

    No full text
    Replicative senescence limits cellular proliferation in vivo and in vitro. Recently, other groups and we reported that p38 kinase plays a key role on the onset of senescence. In this study, we demonstrated that replicative senescence can be delayed in rabbit chondrocytes in vitro by that p38 kinase inactivation. We found that the activity of p38 kinase is elevated in senescent chondrocytes as compared to pre-senescent counterparts. To examine the role of p38 kinase on the onset of senescence, we inactivated the kinase pharmacologically or genetically using either a chemical inhibitor, SB203580, or dominant negative mutant forms of MKK6 and p38 (MKK6A and p38dn, respectively). We show that the inactivation of p38 kinase leads to the stimulation of proliferation, the extension of life span, and a delay in the onset of senescence, thus implying that p38 kinase limits the life span of rabbit articular chondrocytes in vitro.The National Research Laboratory Program of the Korean Ministry of Science and Technology (to S.D.Y.) and Molecular Aging Research Center (to S.D.Y.) support this research

    Cdk2-dependent phosphorylation of the NF-Y transcription factor is essential for the expression of the cell cycle-regulatory genes and cell cycle G1/S and G2/M transitions

    No full text
    We previously reported that cdk2 phosphorylates two serine residues near the DNA-binding domain of the YA subunit of NF-Y transcription factor and this phosphorylation is essential for DNA binding of NF-Y. In this study, we examined the effects of a phosphorylation-deficient mutant form of YA, YA-aa, in which the two serine residues are replaced with alanine, on the cell cycle and expression of the NF-Y target genes. Transient transfection assays show that YA-aa inhibits transcription from the NF-Y target promoters, such as cdc2, cyclin A, and cdc25C. Moreover, this inhibitory function of YA-aa can be suppressed by the expression of wild-type YA, implying that YA-aa inhibits transcription of those NF-Y target genes by inactivating wild-type YA. Since NF-Y target genes include the cell cycle-regulatory genes that ensure orderly progression of the cell cycle, we examined the effects of YA-aa in cell cycle progression. We constructed a recombinant adenovirus encoding YA-aa and found that YA-aa expression leads to repression of cell cycle-regulatory genes, such as cyclin A, RNR R2, DNA polymerase a, cdc2, cyclin B, and cdc25C. Consistently, YA-aa expression results in the inactivation of both cdc2 and cdk2. Furthermore, cell cycle analysis reveals that YA-aa induces cell cycle arrest at both G1 and G2/M. These results suggest that cdk2-dependent phosphorylation of NF-Y is essential for the expression of the cell cycle-regulatory genes and therefore for cell cycle progression at both G1/S and G2/M

    Roscovitine sensitizes glioma cells to TRAIL-mediated apoptosis by downregulation of survivin and XIAP

    No full text
    The cytotoxic effect of the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is limited in many glioma cell lines. However, treatment with TRAIL in combination with subtoxic doses of roscovitine, a specific inhibitor of Cdc2 and Cdk2, induced rapid apoptosis in TRAIL-resistant glioma cells. Roscovitine could sensitize Bcl-2- or Bcl-xL-overexpressing glioma cells, but not human astrocytes, to TRAIL-induced apoptosis, offering an attractive strategy for safely treating resistant gliomas. Treatment with roscovitine significantly inhibited Cdc2 activity, and expression of a dominant-negative Cdc2 mutant sensitized glioma cells to TRAIL-induced apoptosis. While the proteolytic processing of procaspase-3 by TRAIL was partially blocked in U87MG and T98 glioma cells, treatment with roscovitine recovered TRAIL-induced activation of caspases very efficiently in these cells. We found that treatment with roscovitine or expression of a dominant-negative Cdc2 mutant downregulated the protein levels of survivin and XIAP, two major caspase inhibitors. Overexpression of survivin or XIAP attenuated the apoptosis induced by roscovitine and TRAIL. Taken together, these results suggest that downregulation of survivin and XIAP by subtoxic doses of roscovitine contributes to the amplification of caspase cascades, thereby overcoming glioma cell resistance to TRAIL-mediated apoptosisclos

    Oocyte-based screening of cytokinesis inhibitors and identication of pectenotoxin-2 that induces Bim/Bax-mediated apoptosis in p53-deficient tumors

    No full text
    In this study, we demonstrate that a loss of p53 sensitizes tumor cells to actin damage. Using a novel oocyte-based screening system, we identified natural compounds that inhibit cytokinesis. Among these, pectenotoxin-2 (PTX2), which was first identified as a cytotoxic entity in marine sponges, which depolymerizes actin. laments, was found to be highly effective and more potent to activate an intrinsic pathway of apoptosis in p53-deficient tumor cells compared to those with functional p53 both in vitro and in vivo. Other agents that depolymerize or knot actin. laments were also found to be toxic to p53-deficient tumors. In p53-deficient cells, PTX-2 triggers apoptosis through mitochondrial dysfunction, and this is followed by the release of proapoptotic factors and caspase activation. Furthermore, we observed Bax activation and Bim induction only in p53-deficient cells after PTX-2 treatment. RNA interference of either Bim or Bax resulted in the inhibition of caspases and apoptosis induced by PTX2. However, the small interfering RNAs (SiRNA) of Bim blocked a conformational change of Bax, but Bax SiRNA did not affect Bim expression. Therefore, these results suggest that Bim triggers apoptosis by activating Bax in p53-deficient tumors upon actin damage, and that actin inhibitors may be potent chemotherapeutic agents against p53-deficient tumors

    p41-Arc, a regulatory subunit of Arp2/3 complex, can induce premature senescence in the absence of p53 and Rb

    No full text
    Cellular senescence is a tumor-suppressive process instigated by proliferation in the absence of telomere replication, by cellular stresses such as oncogene activation, or by activation of the tumor suppressor proteins, such as Rb or p53. This process is characterized by an irreversible cell cycle exit, a unique morphology, and expression of senescence-associated-β-galactosidase (SA-β-gal). Despite the potential biological importance of cellular senescence, little is known of the mechanisms leading to the senescent phenotype. p41-Arc has been known to be a putative regulatory component of the mammalian Arp2/3 complex, which is required for the formation of branched networks of actin filaments at the cell cortex. In this study, we demonstrate that p41-Arc can induce senescent phenotypes when it is overexpressed in human tumor cell line, SaOs-2, which is deficient in p53 and Rb tumor suppressor genes, implying that p41 can induce senescence in a p53-independent way. p41-Arc overexpression causes a change in actin filaments, accumulating actin filaments in nuclei. Therefore, these results imply that a change in actin filament can trigger an intrinsic senescence program in the absence of p53 and Rb tumor suppressor genes

    Bcl-xL and E1B-19K Proteins Inhibit p53-induced Irreversible Growth Arrest and Senescence by Preventing Reactive Oxygen Species-dependent p38 Activation

    No full text
    In this study, we describe novel functions of the antiapoptotic Bcl-2 family proteins. Bcl-x(L) and E1B-19K were found to inhibit p53-induced irreversible growth arrest and senescence, but not to inhibit transient growth arrest, implying that Bcl-x(L) and E1B-19K are specifically involved in senescence without participating in growth arrest. We provide several lines of evidences showing that the functions of Bcl-x(L) and E1B-19K to prevent generation of reactive oxygen species (ROS) are important to inhibit senescence induction. First, we found that that ROS are increased during p53-induced senescence. Moreover, Bcl-x(L) and E1B-19K inhibit this p53-induced ROS generation. Second, antioxidants prevent the induction of senescence and ROS by p53, but not the persistence of the senescence phenotype. Third, the anti-senescence functions of Bcl-x(L) and E1B-19K were suppressed by adding exogenous ROS. These results suggest that Bcl-x(L) and E1B-19K inhibit senescence induction by preventing ROS generation. Furthermore, p38 kinase was found to be activated during p53-induced senescence, but not in cells expressing Bcl-x(L) or E1B-19K, or in cells treated with anti-oxidants. Consistently, a chemical inhibitor of p38 kinase, SB203580, was found to inhibit p53-induced senescence, but only when treated before the cellular commitment to senescence, implying that p38 kinase is necessary for senescence induction. Therefore, Bcl-x(L) and E1B-19K inhibit p53-induced senescence by preventing ROS generation, which in turn leads to the activation of p38 kinase. These results also suggest that the oncogenic potential of Bcl-2 is due to its ability to inhibit senescence as well as apoptosis
    corecore